You are correct, L'Hopital's rule can be applied here. Actually, the limit does not even exist because by evaluating the limit along the sequences $(x_n,y_n)=(1/n,1/n)$ and $(x_n,y_n)=(1/n,e^{-n})$, which go to $(0^+,0^+)$ as $n$ goes to infinity, we obtain different results.
As regards $(x_n,y_n)=(1/n,1/n)$: \begin{align*} \frac{x_n^{y_n^{x_n}}-x_n^{y_n^{2}}}{y_n^{x_n}}&= \frac{\exp(\ln(x_n)\exp(x_n\ln(y_n)))-{\exp(y^2_n\ln(x_n))}}{\exp(x_n\ln(y_n))}\\\ &\to\frac{\exp(-\infty\cdot e^0)-e^0}{e^0}=\frac{0-1}{1}=-1. \end{align*}
On the other hand for $(x_n,y_n)=(1/n,e^{-n})$: \begin{align*} \frac{x_n^{y_n^{x_n}}-x_n^{y_n^{2}}}{y_n^{x_n}}&= \frac{\exp(\ln(x_n)\exp(x_n\ln(y_n)))-{\exp(y^2_n\ln(x_n))}}{\exp(x_n\ln(y_n))}\\\ &\to\frac{\exp(-\infty\cdot e^{-1})-e^0}{e^{-1}}=\frac{0-1}{e^{-1}}=-e. \end{align*}