It's not true ! Take $$A=\begin{pmatrix}1&0\\\0&0\end{pmatrix}\quad \text{and}\quad B=\begin{pmatrix}0&0\\\0&1\end{pmatrix}.$$
Notice that if $A$ and $B$ are not singular, you can also have $A+B$ singular, for example $$A=\begin{pmatrix}1&0\\\0&1\end{pmatrix}\quad \text{and}\quad B=\begin{pmatrix}-1&0\\\0&-1\end{pmatrix}.$$