You have the majority of the argument, with a presumed typo, so the rest becomes trying to write it with proper grammar and structure.
> Claim: $(bab^{-1})^n = ba^n b^{-1}$ for all $n\in\mathbb{N}$
Base case: let $n=1$. Then $(bab^{-1})^1 = bab^{-1}$
Assume for our induction hypothesis that $(bab^{-1})^n = ba^n b^{-1}$ for some $n\geq 1$.
We show then that it must also be true for $n+1$.
$(bab^{-1})^{n+1} = (bab^{-1})^n(bab^{-1}) =^{I.H.} ba^nb^{-1}bab^{-1}$
$=ba^n(b^{-1}b)ab^{-1} = ba^n 1 a b^{-1} = ba^nab^{-1}=ba^{n+1}b^{-1}$
Thus, proving the claim.