Don't let the zebra throw you off!
Let $$X_i = \begin{cases}1, & p = \frac 1 9 \\\ 2, & p = \frac 1 9 \\\ \vdots \\\ 9, & p = \frac 1 9\end{cases}$$
Then the random variable being generated after $n$ seconds is:
$$X_1 + 10 X_2 + 10^2 X_3 + \cdots + 10^n X_n$$
We use the linearity of expectation to write:
$$\operatorname{E}\left({X_1 + 10 X_2 + 10^2 X_3 + \cdots + 10^n X_n}\right)$$ $$= \operatorname{E}(X_1) + 10 \operatorname{E}(X_2) + 10^2 \operatorname{E}(X_3) + \cdots + 10^n \operatorname{E}(X_n) $$
$$ = 5 + 50 + 500 + \cdots + 5 \times 10^n$$
So the answer is:
$$\underbrace{555\ldots555}_{n \text{ digits }}$$