Artificial intelligent assistant

Continued fraction for $\sqrt{14}$ I'm referencing this page: An Introduction to the Continued Fraction, where they explain the algebraic method of solving the square root of $14$. $$\sqrt{14} = 3 + \frac1x$$ So, $x_0 = 3$, Solving for $x$, we get $$x = \frac{\sqrt{14} + 3}5$$ However, in the next step, how do we get the whole number $x_1$ = 1? $$\frac{\sqrt{14} + 3}5 = 1 + \frac1x$$ My understanding is we would substitute for $x$ in the original equation for $\sqrt{14}$ whereas $$\sqrt{14} = 3 + \frac1{\frac{\sqrt{14} + 3}5}$$ Then substitute the $\sqrt{14}$ again here for $x = \frac{\sqrt{14} + 3}5$ to get the $x_1$ of the continued fraction? Am I just getting the algebra at this point wrong or am I botching steps?

$\sqrt{14}=3+\sqrt{14}-3=3+\frac{1}{\frac{\sqrt{14}+3}{5}}\implies x_0 = 3$

$\frac{\sqrt{14}+3}{5}=\frac{6+\sqrt{14}-3}{5}=1+\frac{\sqrt{14}-2}{5}=1+\frac{1}{\frac{\sqrt{14}+2}{2}} \implies x_1 = 1$

$\frac{\sqrt{14}+2}{2}=\frac{5+\sqrt{14}-3}{2}=2+\frac{\sqrt{14}-2}{2}=2+\frac{1}{\frac{\sqrt{14}+2}{5}} \implies x_2 = 2$

etc.

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy 54c68d0dc5fde0b363d4ee9b1cb76eb1