Apply "$\bmod4$" on each term, then you get:
$\sum\limits_{n=1}^{100}n^5\equiv25\sum\limits_{n=1}^{4}(n\bmod4)^5\equiv25(1^5+2^5+3^5+4^5)\equiv32500\equiv0\pmod4$
Apply "$\bmod4$" on each term, then you get:
$\sum\limits_{n=1}^{100}n^5\equiv25\sum\limits_{n=1}^{4}(n\bmod4)^5\equiv25(1^5+2^5+3^5+4^5)\equiv32500\equiv0\pmod4$