When the metric is induced from a norm.
This kind of metric space $(X,d)$ must satisfy $$ d(x+a,y+a)=d(x,y)$$ $$ d(\alpha x,\alpha y)=|\alpha|d(x,y)$$ for all $x,y,a\in X$,and scalar $\alpha$.
And $X$ must be a vector space.
When the metric is induced from a norm.
This kind of metric space $(X,d)$ must satisfy $$ d(x+a,y+a)=d(x,y)$$ $$ d(\alpha x,\alpha y)=|\alpha|d(x,y)$$ for all $x,y,a\in X$,and scalar $\alpha$.
And $X$ must be a vector space.