Let nth root be $z=\exp({2\pi i\frac{k}{n}})$. Now you can say other root of unity is $z'=\exp(2\pi i\frac{k+l}{n})$.
Now a number subtending angle $90^\circ$ anticlockwise from $z$ is $\exp(\frac{\pi i}{2})\cdot z$. So $z' = \exp(\frac{\pi i}{2})\cdot z$
$$\exp\left(2\pi i\frac{k+l}{n}\right) =\exp\left(\frac{\pi i}{2}\right) \exp\left(2\pi i\frac{k}{n}\right)$$
On solving
$$\frac{ 2\pi i(k+l)}{n} = \frac{\pi i}{2} + \frac{2\pi ik}{n}$$
you get $n = 4l$