Starting from $$H(z)=\frac{1-z^{-1}+z^{-2}-3z^{-3}}{z^{-2}(1-z^{-1})}$$ then \begin{align} H(z) &= \frac{z^{3}}{z^{3}} \cdot \frac{1-z^{-1}+z^{-2}-3z^{-3}}{z^{-2}(1-z^{-1})} \\\ &= \frac{z^{3} - z^{2} + z - 3}{z-1} = \frac{z^{2} (z-1) + (z-1) -2}{ z-1} \\\ &= 1 + z^{2} + \frac{2}{1-z} = 1 + z^{2} + 2 \, \sum_{n=0}^{\infty} z^{n} \\\ &= 3 + 2 z + 3 z^{2} + 2 z^{3} + 2 z^{4} + \cdots. \end{align}