$(1)$ since the cube is bottomless, the square at the bottom of the cube is the boundary. This square **lies** in the plane $z=-1$, but it is not the whole plane.
$(2)$ firstly, your green and purple arrows are going in the same direction, so lets just imagine the green one is pointing the other way.
Both $n=k$ and $n=-k$ are normal to $C$, you can take either as long as the person is walking around the surface in the right way (discussed below).
The way to determine the correct direction (looking from below) is to imagine that the interior of the surface must always be on the person's left (as they walk around the boundary) which corresponds with the green direction.
I was explaining the direction choice for $n=−k$, so that it matched your picture, the example uses $n=k$, so the direction changes (from green to purple), this is so we can go around the boundary in the same directions for both surfaces $S_1$ and $S_2$.