Well, we have:
$$\mathscr{I}_{\space\text{n}}:=\int\frac{\csc^2\left(x\right)}{\sqrt{\text{n}-\cot^2\left(x\right)}}\space\text{d}x\tag1$$
Substitute:
$$\text{u}:=\frac{\cot\left(x\right)}{\sqrt{\text{n}}}\tag2$$
So, we get:
$$\mathscr{I}_{\space\text{n}}=-\int\frac{1}{\sqrt{1-\text{u}^2}}\space\text{d}\text{u}=\text{C}-\arcsin\left(\text{u}\right)=\text{C}-\arcsin\left(\frac{\cot\left(x\right)}{\sqrt{\text{n}}}\right)\tag3$$