Start with writing down the information you are given:
$P(Does Not Renew) \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad= 0.05$
$P(Renew) = 1- P(DoesNotRenew) \quad\quad\quad\;= 0.95$
$P(>= 40\; |\; Renew) \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\;= 0.9$
$P(< 40\; |\; Renew) = 1 - P(>=40\;|\;Renew) \quad= 0.1$
$P(< 40\; |\; Does Not Renew) \quad\quad\quad\;\quad\quad\quad\quad\quad= 0.6$
a) By Law Of Total Probability:
$\quad P(<40) = P(<40 \; | \; Renew)P(Renew) + P(<40 \; | \; DoesNotRenew)P(DoesNotRenew)$
$\quad \quad \quad \quad \quad = (0.1)(0.95) + (0.6)(0.05) = 0.125$
b) By Bayes Theorem:
$\quad P(DoesNotRenew\; | < 40)P(<40) = P(<40\;|\;Does Not Renew)P(Does Not Renew)$ $\quad P(DoesNotRenew\; | < 40)(0.125) = (0.6)(0.05)$
$\quad P(DoesNotRenew\; | < 40) = (0.6)(0.05)/0.125$