From a more elementary viewpoint:
Assume $N(\epsilon)=1$. Then $\epsilon^{-1}=a-b\sqrt{m}$. Since $\epsilon > 1$, $\epsilon > \epsilon^{-1}$, thus $2b\sqrt{m}>0$, hence $b > 0$. Now $\epsilon^{-1}=a-b\sqrt{m} > 0$ thus $a > 0$.
Similarly, if $N(\epsilon)=-1$, $\epsilon^{-1}=-a+b\sqrt{m}$. Since $\epsilon > 1$, $\epsilon^{-1} < \epsilon$, which entails $a > 0$. Since $\epsilon^{-1} > 0$, $b\sqrt{m} > a > 0$ thus $b > 0$.