**Classic Substitution Method**
Let $x=\sqrt{y^2+z^2}\tan \theta$ and thus $dx=\sqrt{y^2+z^2}\sec^2 \theta \,d\theta$. Then,
$$\begin{align} \int\frac{dx}{(x^2+y^2+z^2)^{3/2}}&=\frac{1}{y^2+z^2}\int\cos \theta \,d\theta\\\\\\\ &=\frac{1}{y^2+z^2}\sin \theta +C\\\\\\\ &=\frac{1}{y^2+z^2}\frac{x}{\sqrt{x^2+y^2+z^2}}+C \end{align}$$