\dot\theta$. On using the initial condition $v=u$ when $t=0$, the energy conservation equation becomes:
$(b-a\theta)\dot\theta=u$
Solving differential equation
$$\int_0^{\frac{b}{a}}(b-a\theta)d\theta = u \int_0^{\tau}dt$$
\begin{align}\tau &= \frac{1}{u} \int_0^{\frac{b}{a}}(b-a\theta)d\theta\\\&= \frac{1}{u}[b\theta - \frac{1}{2} a \theta^2]_0^{b/a} \\\&= \frac{b^2}{2au}\end{align}
What sort of solution to be done to make use of the formula (A)?