OK, a simpler solution.
For any $x \in G$, $T_xV(e) = VT_x(e) = V(x)$ implies $V(x) = xV(e)$, so if this holds for all $x \in G$, then $V = L_b$ with $b=T(e)^{-1}$.
OK, a simpler solution.
For any $x \in G$, $T_xV(e) = VT_x(e) = V(x)$ implies $V(x) = xV(e)$, so if this holds for all $x \in G$, then $V = L_b$ with $b=T(e)^{-1}$.