Let $\,\,\\{1\\}\
eq N\triangleleft G\,\,$ , and wlog let us assume $\,\,1\in\\{1,2,...,n\\}\,$ is a fixed point of $\,N\,$. But then for any $\,g\in G\,\,,\,x\in N$ , we get $$g^{-1}xg(1)=1\Longrightarrow xg(1)=g(1)\Longrightarrow g(1)\,\,\text{is a fixed point of } N$$
Well, now use that $\,G\,$ is transitive to get a contradiction