You equate all these derivatives to $0$. So you get: $$4 \lambda (x-1)+2(x+1)e^y=0\tag{1}$$ $$2 \lambda y + (x+1)^2 e^y=0 \tag{2}$$ $$2(x-1)^2+y^2-3=0\tag{3}$$ From $2$, we have $(x+1) e^y=\frac{-2\lambda y}{x+1}$.
Substitute this in $1$ to get $y=x^2-1$.
Substitute this in $3$ to get $x^4=4x\Rightarrow x=0,4^{\frac{1}{3}}$. Using this we get the possible pairs $\left( x,y\right)$ as $\left( 0,-1\right)$ and $\left( 4^{\frac{1}{3}},4^{\frac{2}{3}}-1\right)$.