 Here lets apply trigonometry in $\triangle ABC$ $$tan\angle ACB=\frac{AB}{BC}$$ $$tan30=\frac{AB}{x}$$ $$\rightarrow AB=H=tan30(x)\tag1$$
Applying the same thing in $\triangle ABD$ we can get $$tan\angle ADB=\frac{AB}{100+x}$$ $$tan25=\frac{AB}{100+x}$$ $$\rightarrow AB=H=tan25(100+x)\tag2$$
As $(1)=(2)$ We can easily get $$x=420.09m\tag3$$ using $tan25=0.466$ and $tan30=0.577$
Now again coming back to $\triangle ABC$ and using equation $(1)$ $$H=420.09(tan30)$$ $$H=242.5m \sim 242m$$