For each $\sigma=\langle b_n:n\in\Bbb N\rangle\in\\{0,1\\}^{\Bbb N}$ let
$$S(\sigma)=\\{2n:n\in\Bbb N\\}\cup\\{2n+1:b_n=1\\}\;;$$
clearly $S(\sigma)$ is syndetic, and the map $\sigma\mapsto S(\sigma)$ is injective. Thus, there are $2^\omega=\mathfrak{c}$ syndetic subsets of $\Bbb N$.