$$\begin{align} (U-W)(U'-W')&=(U-W)\bigl((f(y,U)-f(t,W)-r(t)\bigr)\\\ &=(U-W)(f(y,U)-f(t,W))-(U-W)\,r(t)\\\ &\le-(U-W)\,r(t) \end{align}$$ From here $$ |U'-W'|\le r(t) $$ and $$\begin{align} |U(t)-W(t)|&\le|U(0)-W(0)|+\int_0^t|U'(s)-W'(s)|\,ds\\\ &\le|U(0)-W(0)|+\int_0^t|r(s)|\,ds. \end{align}$$