Let $A_T = \sum_{t=1}^T a_t$.
Summation by parts yields
$$ \sum_{t=1}^T \frac{a_t}{t^2} = \frac{A_T}{(T+1)^2} + \sum_{t=1}^TA_t\left( \frac{1}{t^2} - \frac{1}{(t+1)^2}\right) \\\ = \frac{A_T}{T}\frac{T}{(T+1)^2} + \sum_{t=1}^T\frac{A_t}{t}\left( \frac{2t+1}{t(t+1)^2} \right). $$
The first term on the RHS converges to $0$ as $T \to \infty$ since $A_T/T < M$. Furthermore, the second term is a convergent series by the comparison test, since
$$\frac{A_t}{t}\left( \frac{2t+1}{t(t+1)^2}\right) \leqslant \frac{3M}{(t+1)^2},$$
and $\sum_{t=1}^\infty (t+1)^{-2}$ converges.