The conditional probability of the fox surviving shot #$i$, given that it survives up to that point, is $1 - 10000/(5 (40 + 20 i)^3) = 1 - 1/(4 (2+i)^3)$, $i=0, 1, \ldots$. Thus the probability of eventual survival is $$ \prod_{i=0}^\infty \left(1 - \frac{1}{4 (2 + i)^3}\right) $$ Maple says this is $$ {\frac {-16}{3\; \Gamma \left( -\sqrt [3]{2}/2 \right) \Gamma \left( \left(1-i\sqrt{3}\right) \sqrt[3]{2}/4 \right) \Gamma \left( \left( 1+i\sqrt {3} \right) \sqrt [3]{2}/4 \right) }} \approx 0.950215097 $$