If $k \equiv 4 \pmod{5}$, then \begin{align*} k-1 &\equiv 3 \pmod{5}\\\ (k-1)^2 &\equiv 4 \pmod{5}\\\ \end{align*} Likewise $k^2+1 \equiv 2 \pmod{5}$ Thus $$k(k-1)^2(k^2+1) \equiv 4 \cdot 4 \cdot 2 \equiv 2 \pmod{5}.$$
This contradicts the fact that the given expression is divisible by $5$.