Artificial intelligent assistant

Is $(m \Leftrightarrow m) \Leftrightarrow (m \Rightarrow m)$ a tautology, contradiction or contingent? Is this a Tautology, contradiction or contingent? $(m \Leftrightarrow m) \Leftrightarrow (m \Rightarrow m)$ My answer is that It is a tautology. But what is yours? Can someone please explain with a truth table? Thank you so much!!!!!

m | m <--> m | m --> m | (m <-> m) <--> (m --> m)
T | T | T | T
F | T | T | T


Note that each of $m \rightarrow m$ and $m \leftrightarrow m$ is a tautology (always true, regardless of the truth value of $m$), and hence, $$(m \leftrightarrow m) \leftrightarrow (m \rightarrow m)$$

is necessarily a tautology, as well, which means the following equivalence necessarily holds: $$(m \leftrightarrow m) \leftrightarrow (m \rightarrow m) \equiv T$$

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy 466389f3cdfb43579d09d42401bb0dd7