Consider $x\in D$. Then $f(x)\le \sup f$ and $g(x)\le \sup g$, hence $(f+g)(x)=f(x)+g(x)\le \sup f+\sup g$. Therefore, $\sup f + \sup g$ is _some_ upper bound, but the least upper bound _may_ be smaller.
Your example for strictness is fine.
Consider $x\in D$. Then $f(x)\le \sup f$ and $g(x)\le \sup g$, hence $(f+g)(x)=f(x)+g(x)\le \sup f+\sup g$. Therefore, $\sup f + \sup g$ is _some_ upper bound, but the least upper bound _may_ be smaller.
Your example for strictness is fine.