The difference is normally distributed as well, with $\mu_{x_1-x_2}=\mu_{x_1}-\mu_{x_2}=\mu_y=0$ and $\sigma^2_{x_1-x_2}=\sigma_{x_1}^2+\sigma_{x_2}^2=\sigma_y^2=2B^2$.
Therefore $X_1-X_2=Y\sim \mathcal N(0, 2B^2)$. Now we calculate the probability that the deviation of the absolute value of $Y$ is more than $B$. For this purpose we can standardize Y:
$Z=\frac{Y-\mu_y}{\sigma_y}=\frac{Y-0}{\sqrt 2\cdot B}$
Since $Z$ is symmetric around $0$ we have $P(|Z|>B)=2-2\Phi(B)$.
Thus $P(|Z|>B)=2-2\Phi\left(\frac{B}{\sqrt 2\cdot B} \right)= 2-2\Phi\left(\frac{1}{\sqrt 2} \right)=2-2\Phi\left(0.707107\right)$
Using a calculator for thes (standard) normal distribution we get $\Phi\left(0.707107\right)=0.76$
$P(|Z|>B)=2-2\cdot 0.76=2-1.52=0.48$