Yes. Suppose $x_n \in A$ and $x_n \to x$. If $A + A^\perp = \mathcal{H}$ then we can write $x = y + z$ where $y \in A$ and $z \in A^\perp$. That is, $x-y \in A^\perp$. But then $$\|x-y\|^2 = \langle x-y, x-y \rangle = \lim_{n \to \infty} \langle x_n - y, x-y \rangle = 0$$ since $x-y \in A^\perp$ and $x_n - y \in A$ for all $n$. So $x=y$, meaning $x \in A$.