Try to make a binomial sum appear, and use the Binomial Theorem: $$\begin{align} \sum_{R=0}^N \binom{N-n}{R-r}g^R(1-g)^{N-R} &= g^r(1-g)^{n-r} \sum_{R=0}^N \binom{N-n}{R-r}g^{R-r}(1-g)^{N-n-(R-r)}\\\ &= g^r(1-g)^{n-r} \sum_{k=-r}^{N-n} \binom{N-n}{k}g^{k}(1-g)^{(N-n)-k}\\\ &= g^r(1-g)^{n-r} \sum_{k=0}^{N-n} \binom{N-n}{k}g^{k}(1-g)^{(N-n)-k}\\\ &= g^r(1-g)^{n-r} (g+(1-g))^{N-n}\\\ &= g^r(1-g)^{n-r} 1^{N-n} = g^r(1-g)^{n-r} \end{align}$$