The boys and girls must be placed in an arrangement like the following. $$\require{wasysym}\begin{array}{ccccccccc} \color{darkblue}{b_1} & \color{lightpink}{g_1} & \color{darkblue}{b_2} & \color{lightpink}{g_2} & \color{darkblue}{b_3} & \color{lightpink}{g_3} & \color{darkblue}{b_4} & \color{lightpink}{g_4} & \color{darkblue}{b_5} \end{array}$$ We can rearrange the $\color{darkblue}{\text{boys}}$ and $\color{lightpink}{\text{girls}}$ independently, and there is no restriction upon arrangement within those sets. Therefore the number of admissible arrangements is $$\color{darkblue}{5!}\times\color{lightpink}{4!}=2880.$$