$\Lambda(V)= \oplus_{k=1}^{\infty}\Lambda^k(V)$ and use multiplication map as $\Lambda^k(V) \times \Lambda^l(V) \rightarrow \Lambda^{k+l}(V)$ so this induces multiplication on $\Lambda(V)$.
$\Lambda(V)= \oplus_{k=1}^{\infty}\Lambda^k(V)$ and use multiplication map as $\Lambda^k(V) \times \Lambda^l(V) \rightarrow \Lambda^{k+l}(V)$ so this induces multiplication on $\Lambda(V)$.