If you regard a model with just **one possible world** and your accesibility relation $R$ is **reflexive** ($wRw$ for all possible worlds), then your counter example works:
Say $\Diamond p$ **false**
$\Rightarrow$ $p$ **false** in $w$ (where $w$ is the only / static world) ..since $R$ is reflexive
$\Rightarrow$ $p \rightarrow q$ **true** in $w$
$\Rightarrow$ $\Diamond (p \rightarrow q)$ **true** in $w$ ..since $R$ is reflexive
$\Rightarrow$ $(\Diamond p \rightarrow \Diamond q) \rightarrow \Diamond (p \rightarrow q)$ **true** in $w$ ..since $(\Diamond p \rightarrow \Diamond q)$ and $\Diamond (p \rightarrow q)$ are **true** in $w$