The function $1/\sqrt{x(1-x)}$ is only defined over $(0,1)$, so the proposed integral makes no sense. If you want to compute $$ \int_0^1\frac{1}{\sqrt{x(1-x)}}\,dx $$ your substitution is correct: set $x=\sin^2\theta$, with $\theta\in(0,\pi/2)$, so $$ dx=2\sin\theta\cos\theta\,d\theta $$ and you have $$ \int\frac{1}{\sqrt{x(1-x)}}\,dx= \int\frac{2\sin\theta\cos\theta}{\sqrt{\sin^2\theta\cos^2\theta}}\,d\theta= \int 2\,d\theta=2\theta+c $$ Thus your improper integral becomes $$ \int_0^1\frac{1}{\sqrt{x(1-x)}}\,dx= \int_0^{\pi/2} 2\,d\theta=\Bigl[2\theta\Bigr]_0^{\pi/2}=\pi $$
Convergence follows also from the fact that $$ \int_0^1\frac{1}{\sqrt{x(1-x)}}\,dx= \int_0^{1/2}\frac{1}{\sqrt{x(1-x)}}\,dx \+ \int_{1/2}^1\frac{1}{\sqrt{x(1-x)}}\,dx = 2\int_0^{1/2}\frac{1}{\sqrt{x(1-x)}}\,dx $$ and this is convergent by comparison with $\int_0^{1/2}\frac{1}{\sqrt{x}}\,dx$