For arbitrary $x$ we have:
If $x\in A$ then $x\
otin \overline{A}$ so $x\in\overline{\overline{A}}$. So $A\subseteq \overline{\overline{A}}$
And vice versa: If $x\in \overline{\overline{A}}$ then $x\
otin {\overline{A}}$ so $x\in A$ and now we have $\overline{\overline{A}}\subseteq A$
So $A=\overline{\overline{A}}$