If I understood your question correctly, two answers linked below should help solve your problem
1. if $p(x)=a_n x^n + a_{n-1}x^{n-1}+\cdots+a_0$ then $\displaystyle a_n = \sum_{i=0}^n y_i \prod_{j=0,j\
eq i}^n \frac{1}{x_i-x_j}$
2. recentering a polynomial: $ \sum_{k=0}^p a_k \left(z+z'\right)^k = \sum_{\ell=0}^p \left(\sum_{k=l}^p \binom{k}{\ell} (z')^{k-\ell} a_k \right) z^\ell=\sum_{\ell=0}^p b_{\ell}\, z^\ell $