There exists a positive integer $k$ such that for any $N_0$ there exists $m \geq N_0$ with $\frac k m \
eq \frac 1 x+\frac 1 y+\frac 1 z$ for any choice of positive integers $x,y,z$.
There exists a positive integer $k$ such that for any $N_0$ there exists $m \geq N_0$ with $\frac k m \
eq \frac 1 x+\frac 1 y+\frac 1 z$ for any choice of positive integers $x,y,z$.