Let $(s_1,s_2,\ldots,s_{m-1},s)$ be a Hamiltonian cycle in $\Gamma(G/N,S)$. If $N = \langle s_1s_2 \cdots s_{m-1}s \rangle$, we are done by the lemma, and otherwise $N = \langle (s_1s_2 \cdots s_{m-1}s)(s^{-1}t) \rangle = \langle (s_1s_2 \cdots s_{m-1}t \rangle$, so we can apply the lemma to the Hamiltonian cycle $(s_1,s_2,\ldots,s_{m-1},t)$ of $\Gamma(G/N.S)$.