$$x=5 \cos (2 t)\implies \frac{dx}{dt}=\color{red}{-}10 \sin (2 t)$$ $$y=t^{7/2}\implies \frac{dy}{dt}=\frac{7 }{2}t^{5/2}$$
$$\frac{dy}{dx}=\frac{\frac{dy}{dt} }{\frac{dx}{dt} }=-\frac{7}{20} t^{5/2} \csc (2 t)$$ So, $$t=\frac \pi 4\implies\frac{dy}{dx}=-\frac{7 \pi ^{5/2}}{640}$$ Now, write the equation of the tangent as $$y-y_0=y'\,(x-x_0)$$ Using $x_0=0$ and $y_0=\frac{\pi ^{7/2}}{128}$ makes $$y=-\frac{7 \pi ^{5/2}}{640}\,x+\frac{\pi ^{7/2}}{128}$$ which, in decimal form, would write $$y=0.429353 -0.191334\, x$$