Let $Z=3X+6Y$. Then $E(Z)=3E(X)+6E(Y)$
It can be proven that $Var(Z)=Var(aX+bY)=a^2Var(Y)+2abCov(X,Y)+b^2Var(Y)$.
In your case $X,Y$ are independent. Thus $Cov(X,Y)=0$.
Consequently $$Z\sim \mathcal N (3E(X)+6E(Y),a^2Var(Y)+b^2Var(Y))=\mathcal N(11,5.45)$$
Then you have
$$P(Z>11)=1-P(Z\leq 11)=1-\Phi\left( \frac{11-3\mu_x-6\mu_y}{\sqrt{9Var(X)+36Var(Y)}} \right)$$
$$=1-\Phi\left( \frac{11-10.8}{\sqrt{9\cdot 0.5^2+36\cdot 0.3^2}} \right)$$
$$=1-\Phi\left( \frac{0.2}{2.34307} \right)=1-\Phi(0.0854)$$