Let $z=x +i y$,
$$w=z-\frac4z = x+iy-\frac4{x+iy} = x+iy-\frac{4(x-iy)}{|z|^2}$$ $$= \left( 1-\frac 4{|z|^2}\right)x +i \left( 1+\frac 4{|z|^2}\right)y$$
Now, you could argue both ways.
$$x=0\>\>or \>\> |z|=2 \iff Re(w) =0$$
Let $z=x +i y$,
$$w=z-\frac4z = x+iy-\frac4{x+iy} = x+iy-\frac{4(x-iy)}{|z|^2}$$ $$= \left( 1-\frac 4{|z|^2}\right)x +i \left( 1+\frac 4{|z|^2}\right)y$$
Now, you could argue both ways.
$$x=0\>\>or \>\> |z|=2 \iff Re(w) =0$$