**Hint** $\ $ If $\,x\,$ is a solution so too is $\,x + 3\cdot 11\cdot 13,$ and they have _opposite_ parity.
* * *
Maybe you seek to prove that the _least nonegative_ solution is even. Then
coprime $\,11,13\mid x-7\,\Rightarrow\, 11\cdot 13= 143\mid x-7\ $ so $\,x = 7 + 143k$.
Thus ${\rm mod}\ 3\\!:\,\ 3 \equiv x \equiv 7+143k\equiv 1+2k\ $ so $\,2k\equiv 2,\,$ so $\,k\equiv 1\ $ so $\, k = 1+3n$
Thus $\,x = 7+143(1+3n) = 150+ 429n$