The integral $\int_{-\infty}^\infty \frac{\sin(x)}{x}\,dx$ converges.
We can analyze the contour integral
$$\begin{align} \oint_C\frac{e^{iz}}{z}\,d&=\int_{\epsilon\le |x|\le R}\frac{e^{ix}}{x}\,dx+\int_{\pi}^0\frac{e^{i\epsilon e^{i\phi}}}{\epsilon e^{i\phi}}\,i\epsilon e^{i\phi}\,d\phi+\int_{0}^\pi \frac{e^{iR e^{i\phi}}}{R e^{i\phi}}\,iR e^{i\phi}\,d\phi\\\\\\\ &=\int_{\epsilon\le |x|\le R}\frac{e^{ix}}{x}\,dx-i\int_{0}^\pi e^{i\epsilon e^{i\phi}}\,d\phi+i\int_{0}^\pi e^{iR e^{i\phi}}\,d\phi\tag 1 \end{align}$$
From Cauchy's Integral Theorem, the integral on the left-hand side of $(1)$ is identically zero. Furhermore, as $R\to \infty$ the third integral on the right-hand side of $(1)$ approaches $0$, the second one approaches $i\pi$, and the first one approaches the Principal Value integral $\text{PV}\int_{-\infty}^\infty \frac{e^{ix}}{x}\,dx$.
Taking the imaginary part of $(1)$ and putting it all together yields
$$\int_{-\infty}^\infty \frac{\sin(x)}{x}\,dx=\pi$$