Let $Z$ denote the greatest dice roll of Zombie and $H$ the greatest dice roll of Hero. Assume Zombie's rolls and Hero's rolls are independent
Then $\mathrm P(Z\leqslant n)=(n/6)^z$ for every $1\leqslant n\leqslant 6$ hence $\mathrm P(Z= n)=(n/6)^z-((n-1)/6)^z$. Likewise, $\mathrm P(H\leqslant n)=(n/6)^h$ hence $\mathrm P(H\gt n)=1-(n/6)^h$ for every $1\leqslant n\leqslant 6$. This yields $$ \mathrm P(H\gt Z)=\sum_{n=1}^6\mathrm P(Z=n)\mathrm P(H\gt n)=\sum_{n=1}^6((n/6)^z-((n-1)/6)^z(1-(n/6)^h), $$ that is, $$ \mathrm P(H\gt Z)=1-\frac1{6^{z+h}}\sum_{n=1}^6(n^z-(n-1)^z)n^h. $$