Let $X$ be normally distributed and $Z$ be independent of $X$, $X$ having a Weibull distribution of parameters $\lambda=0.2$ and $\kappa=1$, so that $Skew(Z)<0$. Then $Skew(X+Z)=Skew(Z)<0=Skew(X)$.
Let $X$ be normally distributed and $Z$ be independent of $X$, $X$ having a Weibull distribution of parameters $\lambda=0.2$ and $\kappa=1$, so that $Skew(Z)<0$. Then $Skew(X+Z)=Skew(Z)<0=Skew(X)$.