Give the definition following wikipedia:
> **_Defintion._** Let system $y:F([0;\infty),S)\to F([0;\infty),S)$, where $S$ is some space and $F([0,\infty),S)$ if the space of functions from $[0,\infty)$ to $S$. The system $y$ is said to be is _causal_ iff for every two input signals $x_1,x_2\in F([0,\infty);S)$ such that there exist $t_0\in [0,\infty)$ so that $$ x_1(t)=x_2(t),\ \text{for every }t\le t_0,\ \ \text{it holds that }\ y(x_1(t))=y(x_2(t)),\text{ for every }t\le t_0, $$
Then your system is causal, which can be proved by \begin{align*} y(x_1(t)):=x_1(\alpha t) = x_2(\alpha t) =:y(x_2(t)), \text{ for every }t\le t_0, \end{align*} as $\alpha t\le t$ for every $\alpha\in[0,1]$.
I would recommend checking causality of other systems like $$y(x(t)):=x(\alpha^{-1}t),\quad y(x(t)):=\int_0^{\alpha t}x(s)ds+ x(1),\quad y(x(t)):=\sup_{s\in [0,t]}|x(s)|\quad y(x(t)):= x(\sin(2^{-1}\pi t)),\quad y(x(t)):= \sin(2^{-1}\pi x( t)). $$