Here is how `Accumulate` works: `Accumulate[{a, b, c, d}]` produces
{a, a + b, a + b + c, a + b + c + d}
Thus, the `m`th entry of the list `Accumulate[Table[MoebiusMu[k], {k, 1, n}]]` is $$M(m)=\sum_{k=1}^m\mu(k)$$ so that `Mean[Accumulate[Table[MoebiusMu[k], {k, 1, n}]]]`, the average of the `n` entries on this list, is the just average of the first $n$ values of the Mertens function $M(k)$: $$\frac{1}{n}\left(\sum_{k=1}^nM(k)\right)\qquad$$ and then the outer `Table` just makes a list of these values from `n=1` to `n=x`.