Let $F(z) = \sum_{n=0}^\infty a_n (z-\lambda_0)^n$, with $\lambda$ inside the radius of convergence (you could just take $\lambda=\lambda_0$). Then $$ \begin{split} F(A)x &= \left(\sum_{n=0}^\infty a_n (A-\lambda_0 I)^n x\right) \\\ &= \sum_{n=0}^\infty a_n (A-\lambda_0 I)^n x = \sum_{n=0}^\infty a_n (\lambda-\lambda_0)^n x \\\ &= \left(\sum_{n=0}^\infty a_n (\lambda-\lambda_0)^n x\right) = F(\lambda)x. \end{split} $$
Alternatively, with your approach. Notice that $(zI-A)x=(z-\lambda)x$, so that $(zI-A)^{-1}x=(z-\lambda)^{-1}x$. Hence $$ F(A)x = \frac{1}{2\pi i} \int_{\partial\Omega} \frac{F(z)}{zI-A}x \,dz = \frac{1}{2\pi i} \int_{\partial\Omega} \frac{F(z)}{z-\lambda}x \,dz = F(\lambda)x. $$