!Ellipse
Let $a > b$ be the semi-axes of the ellipse and $c = \sqrt{a^2 - b^2}$ be half of the distance between the two foci. With a suitable choose of origin and coordinate axes, one can make the ellipse satisfies:` $$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad\iff\quad \- \frac{c^2}{a^2b^2} x^2 + \frac{1}{b^2}(x^2 + y^2) = 1\tag{*1} $$
Let $s$ be the length of the other side of your triangle, one have:
$$\begin{cases} t^2 = (x-a)^2 + y^2\\\ s^2 = (x + a)^2 + y^2 \end{cases} \implies \begin{cases} s^2 - t^2 = 4ax\\\ s^2 + t^2 = 2(x^2 + y^2 + a^2) \end{cases} $$
Substitute this back into $(*1)$, one obtain a quadratic equation in $s^2$:
$$-\frac{c^2}{a^2b^2}\left(\frac{s^2 - t^2}{4a}\right)^2 + \frac{1}{b^2}\left(\frac{s^2 + t^2}{2} - a^2\right) = 1$$
Solving this give us: $$s = \sqrt{\frac{4 a^2 \sqrt{c^2 t^2+b^4}+ c^2 t^2 +4a^4}{c^2}}$$