You can do it by induction on $\beta$. Assume that it's true for $\alpha^\gamma$ with $\gamma<\beta$. If the zero function is in $S$, we're done. Otherwise, for $f\in S$ let $\eta(f)=\max\operatorname{supp}(f)$, and let $\eta_0=\min\\{\eta(f):f\in S\\}$. Let $\xi_0=\min\\{f(\eta_0):f\in S\text{ and }\eta(f)=\eta_0\\}$, and let $$S_0=\\{f\upharpoonright\eta_0:f\in S\text{ and }\eta(f)=\eta_0\text{ and }f(\eta_0)=\xi_0\\}\;.$$
Now let $f\in S$ be such that $\eta(f)=\eta_0$, $f(\eta_0)=\xi_0$, and $f\upharpoonright\eta_0=\min S_0$, and verify that $f=\min S$.