Just $$\sqrt{c^2+e^2}+\sqrt{d^2+f^2}\geq\sqrt{(c+d)^2+(e+f)^2}\geq\sqrt{a^2+b^2}$$ If I don't see the triangle inequality I can make the following.
By C-S $$\sqrt{c^2+e^2}+\sqrt{d^2+f^2}=\sqrt{c^2+e^2+d^2+f^2+2\sqrt{(c^2+e^2)(d^2+f^2)}}\geq$$ $$\geq\sqrt{c^2+e^2+d^2+f^2+2(cd+ef)}=\sqrt{(c+d)^2+(e+f)^2}\geq\sqrt{a^2+b^2}$$